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CENTRAL LOCAL DISCONTINUOUS GALERKIN METHODS
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Abstract. In this paper we present two versions of the central local discontinuous Galerkin (LDG)
method on overlapping cells for solving diffusion equations, and provide their stability analysis and
error estimates for the linear heat equation. A comparison between the traditional LDG method on
a single mesh and the two versions of the central LDG method on overlapping cells is also made.
Numerical experiments are provided to validate the quantitative conclusions from the analysis and to
support conclusions for general polynomial degrees.
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1. Introduction

In this paper we present two versions of the central local discontinuous Galerkin (LDG) methods on overlap-
ping cells for solving diffusion equations, and provide their stability analysis and error estimates for the linear
heat equation. We also compare the traditional LDG method on a single mesh and the two versions of the
central LDG methods on overlapping cells in this context.

The LDG method is designed by suitably rewriting the diffusion partial differential equation (PDE) as a
first-order system and then discretizing it by the DG method [3]. For a general review of DG methods we refer
to [4]. In this paper we use overlapping cells and hence duplicative information, thereby avoiding numerical
fluxes which is a distinct advantage of central schemes. This work is a continuation of our earlier work in [6,7]
in which we presented and analyzed central DG schemes for hyperbolic PDEs. We would like to point out that
the discussion on the difficulties related to numerical fluxes for DG methods solving diffusion equations has
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attracted a lot of attention in the literature, for example we mention the recovery type DG method by van
Leer and Nomura [8] (see also [9]), and the hybridizable discontinuous Galerkin (HDG) method of Cockburn
et al. [5].

Our overall goal is to design (central) LDG methods which serve as effective solvers for convection diffusion
equations, ranging from scalar equations of the form

ut + f(u)x = (c(u)ux)x, c(u) ≥ 0, (1.1)

to general multidimensional systems of equations. The purely convective case was studied by us in [6,7]. The
main focus of this paper is therefore to initiate the study of central LDG methods for the diffusive case, where
we limit ourselves to a modest beginning with the linear heat equation

ut = uxx, (x, t) ∈ [a, b] × [0, T ]. (1.2)

The formulation of the LDG and central LDG methods for the heat equation (1.2), can be extended in a
straightforward manner to general nonlinear convection diffusion equations, see [3,6]. However, the stability
and convergence analysis is more subtle: our stability analysis and error estimates are restricted to the heat
equation with periodic boundary conditions and can be generalized to non-periodic boundary conditions, based
on the finite element techniques. Stability analysis of the (central) LDG method for more general nonlinear
diffusion is left for a future work.

The starting point of the LDG method is to rewrite the heat equation (1.2) as a first-order system

ut − rx = 0, r − ux = 0. (1.3)

Let {xj} be a partition of [a, b] with hj+ 1
2

= xj+1 − xj and h = maxj hj+ 1
2
. The mesh is regular, in the sense

that maxj hj+ 1
2
/minj hj+ 1

2
is upper-bounded by a fixed constant during mesh refinements. Denote xj+ 1

2
=

1
2 (xj+1 + xj), Ij = (xj− 1

2
, xj+ 1

2
), and Ij+ 1

2
= (xj , xj+1). Vh is the set of piecewise polynomials of degree k

over the subintervals {Ij} with no continuity assumed across the subinterval boundaries. Likewise, Wh is the
set of piecewise polynomials of degree k over the subintervals {Ij+ 1

2
} with no continuity assumed across the

subinterval boundaries.
The traditional LDG method is defined by formally using the DG method in equations (1.3). The semi-

discrete version is as follows. Find uh(·, t) ∈ Vh and rh(·, t) ∈ Vh, such that for any ϕh ∈ Vh and ψh ∈ Vh,

∫
Ij

∂tuh ϕhdx = −
∫

Ij

rh∂xϕhdx+ r̂j+ 1
2
ϕh

(
x−

j+ 1
2

)
− r̂j− 1

2
ϕh

(
x+

j− 1
2

)
(1.4)

∫
Ij

rh ψhdx = −
∫

Ij

uh∂xψhdx+ ûj+ 1
2
ψh

(
x−

j+ 1
2

)
− ûj− 1

2
ψh

(
x+

j− 1
2

)
. (1.5)

Here ϕh(x±
j+ 1

2
) refers to the right and left limits, respectively, of the possibly discontinuous function ϕh(x)

at the cell interface xj+ 1
2
. A good choice for the numerical fluxes (the hat terms), both in accuracy and in

compactness of the eventual stencil after the auxiliary variable rh is eliminated, is

ûj+ 1
2

= uh

(
x+

j+ 1
2
, t
)
, r̂j+ 1

2
= rh

(
x−

j+ 1
2
, t
)

(1.6)

i.e. we alternatively take the left and right limits for the fluxes in u and r (we could of course also take the pair
uh(x−

j+ 1
2
, t) and rh(x+

j+ 1
2
, t) as the fluxes).

The first version of central LDG method. On overlapping cells uses both the spaces Vh and Wh. The
first semi-discrete version has the following form. Find uh(·, t), rh(·, t) ∈ Vh and vh(·, t), sh(·, t) ∈ Wh, such that
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for any ϕh, ϕ̄h ∈ Vh and ψh, ψ̄h ∈Wh, we have

∫
Ij

∂tuh ϕhdx = −
∫

Ij

sh∂xϕhdx+ sh

(
xj+ 1

2
, t
)
ϕh

(
x−

j+ 1
2

)
− sh

(
xj− 1

2
, t
)
ϕh

(
x+

j− 1
2

)
(1.7)

∫
Ij

rh ϕ̄hdx = −
∫

Ij

vh∂xϕ̄hdx+ vh

(
xj+ 1

2
, t
)
ϕ̄h

(
x−

j+ 1
2

)
− vh

(
xj− 1

2
, t
)
ϕ̄h

(
x+

j− 1
2

)
; (1.8)

∫
I

j+ 1
2

∂tvh ψhdx = −
∫

I
j+ 1

2

rh∂xψhdx+ rh (xj+1, t)ψh

(
x−j+1

)− rh(xj , t) (1.9)

ψh(x+
j )
∫

I
j+ 1

2

sh ψ̄hdx = −
∫

I
j+ 1

2

uh∂xψ̄hdx+ uh (xj+1, t) ψ̄h

(
x−j+1

)− uh (xj , t) ψ̄h

(
x+

j

)
. (1.10)

The second version of the central LDG method. Has a similar form to the first one: the only
difference from (1.7)–(1.10) is the addition of an extra term involving the difference between the two duplicative
solutions on different cells. This term serves as an additional numerical dissipation and we will see later that
the addition of this term allows us to recover optimal convergence rate for the piecewise linear case, as well
as providing smaller errors for non-smooth initial conditions. The semi-discrete version is as follows. Find
uh(·, t), rh(·, t) ∈ Vh and vh(·, t), sh(·, t) ∈ Wh, such that for any ϕh, ϕ̄h ∈ Vh and ψh, ψ̄h ∈ Wh, we have

∫
Ij

∂tuh ϕhdx =
1

τmax

∫
Ij

(vh − uh)ϕhdx−
∫

Ij

sh∂xϕhdx

+ sh

(
xj+ 1

2
, t
)
ϕh

(
x−

j+ 1
2

)
− sh

(
xj− 1

2
, t
)
ϕh

(
x+

j− 1
2

)
(1.11)∫

Ij

rh ϕ̄hdx = −
∫

Ij

vh∂xϕ̄hdx

+ vh

(
xj+ 1

2
, t
)
ϕ̄h

(
x−

j+ 1
2

)
− vh

(
xj− 1

2
, t
)
ϕ̄h

(
x+

j− 1
2

)
; (1.12)∫

I
j+ 1

2

∂tvh ψhdx =
1

τmax

∫
I

j+ 1
2

(uh − vh)ψhdx−
∫

I
j+ 1

2

rh∂xψhdx

+ rh (xj+1, t)ψh

(
x−j+1

)− rh (xj , t)ψh(x+
j ) (1.13)∫

I
j+ 1

2

sh ψ̄hdx = −
∫

I
j+ 1

2

uh∂xψ̄hdx

+ uh (xj+1, t) ψ̄h

(
x−j+1

)− uh (xj , t) ψ̄h(x+
j ) (1.14)

where τmax is an upper bound of the time step size due to the CFL restriction, that is, τmax = c h2 with a given
constant CFL number c dictated by stability.

Both versions of the central LDG methods on overlapping cells do not need a numerical flux to define
the interface values of the solution, since the evaluation of the solution at the interface is in the middle of
the staggered mesh, hence in the continuous region of the solution. The initial condition is taken as the L2

projection of the PDE initial condition into the relevant finite element space.
The organization of the paper is as follows. In Section 2 we analyze the stability and give an error estimate for

the first version of the central LDG scheme (1.7)–(1.10) on overlapping cells. We will see that only a sub-optimal
O(hk) error estimate can be proved for piecewise polynomials of degree k. This sub-optimal convergence rate
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is also verified by numerical experiments to be sharp for k = 1. In Section 3 we analyze the stability and
give an error estimate for the second version of the central LDG scheme (1.11)–(1.14) on overlapping cells. We
still can only get the sub-optimal O(hk) error estimate using the finite element technique, however a Fourier
analysis indicates the optimal O(hk+1) convergence rate for k = 0 and k = 1 and this optimal rate is confirmed
numerically together with the cases with higher k in Section 4. A comparison among the traditional LDG
scheme and the two versions of central LDG schemes on overlapping cells is also given in Section 4. Concluding
remarks are provided in Section 5.

2. Analysis of the first version of the central LDG scheme on overlapping

cells

We study the L2 stability of the LDG scheme on overlapping cells (1.7)–(1.10) for the equation (1.2) in
Section 2.1. In Section 2.2 we provide an L2 a priori error estimate for smooth solutions. In Section 2.3 we
give a quantitative error estimate for this central LDG scheme for the polynomial degree up to 1 using Fourier
analysis, similar to the technique used in [7,10,11]. As indicated before, we assume periodic boundary conditions.

2.1. L2 stability

Theorem 2.1. The numerical solution uh, rh, vh and sh of the LDG scheme (1.7)–(1.10) for the equation (1.2)
satisfies the following L2 stability condition

1
2

d
dt

∫ b

a

(
(uh)2 + (vh)2

)
dx+

∫ b

a

(
r2h + s2h

)
dx = 0. (2.1)

Proof. Taking the test functions ϕh = uh and ψ̄h = sh in (1.7) and (1.10) respectively, summing up over j, and
observing the periodic boundary condition, we have

1
2

d
dt

∫ b

a

u2
hdx+

∫ b

a

(sh)2dx

= −
∑

j

[ ∫ xj

x
j− 1

2

∂x(uhsh)dx +
∫ x

j+ 1
2

xj

∂x(uhsh)dx− sh

(
xj+ 1

2
, t
)
uh

(
x−

j+ 1
2
, t
)

+sh

(
xj− 1

2
, t
)
uh

(
x+

j− 1
2
, t
)
− uh (xj+1, t) sh

(
x−j+1, t

)
+ uh (xj , t) sh

(
x+

j , t
) ]

= 0.

Similarly, taking the test functions ϕ̄h = rh and ψh = vh in (1.8) and (1.9) respectively, we have

1
2

d
dt

∫ b

a

v2
hdx+

∫ b

a

r2hdx = 0.

Summing up the two equalities proves the theorem. �

Remark 2.1. The proof of Theorem 2.1 is similar to the proof of the cell entropy inequality for the traditional
LDG method in [3]. However, we cannot prove a similar L2 stability result for the central LDG scheme on
overlapping cells when applied to the nonlinear diffusion equation (1.1), even though the scheme itself can
be easily defined for such nonlinear problems. The proof of Theorem 2.1 can be easily generalized to multi-
dimensional central LDG schemes on overlapping cells for the linear diffusion equation.
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2.2. L2 a priori error estimate

In this subsection we use the standard DG techniques [3] to obtain an a priori L2 error estimates for the first
version of the central LDG scheme on overlapping cells given in (1.7)–(1.10).

Theorem 2.2. The numerical solution uh, rh, vh and sh of the central LDG scheme on overlapping cells (1.7)–
(1.10) for the equation (1.2) with a smooth initial condition u(·, 0) ∈ Hk+2 satisfies the following L2 error
estimate

‖u− uh‖2 + ‖u− vh‖2 + |||ux − rh|||2 + |||ux − sh|||2 ≤ Ch2k (2.2)
where u is the exact solution of (1.2), k is the polynomial degree in the finite element spaces Vh and Wh, and
the constant C depends on the (k+ 2)-th order Sobolev norm of the initial condition ||u(·, 0)||Hk+2 as well as on
the final time t, but is independent of the mesh size h. The unmarked norm ‖ · ‖ here and below is the standard
L2 norm. The norm ||| · ||| is defined as

|||r(·, t)|||2 =
∫ t

0

‖r(·, τ)‖2dτ.

Proof. Let us first introduce the shorthand notation

Bj(uh, sh;ϕh, ψ̄h)

=
∫

Ij

∂tuh ϕhdx+
∫

Ij

sh∂xϕhdx− sh

(
xj+ 1

2
, t
)
ϕh

(
x−

j+ 1
2

)
+ sh

(
xj− 1

2
, t
)
ϕh

(
x+

j− 1
2

)
(2.3)

+
∫

I
j+ 1

2

sh ψ̄hdx+
∫

I
j+ 1

2

uh∂xψ̄hdx− uh (xj+1, t) ψ̄h

(
x−j+1

)
+ uh (xj , t) ψ̄h

(
x+

j

)
.

By the definition of the scheme, we have:

Bj(uh, sh;ϕh, ψ̄h) = 0 (2.4)

for all j and all ϕh ∈ Vh and ψ̄h ∈ Wh. It can also be easily verified that the exact solutions u and r = ux of
the PDE (1.2) satisfy

Bj(u, r;ϕh, ψ̄h) = 0 (2.5)
for all j and all ϕh ∈ Vh and ψ̄h ∈ Wh. This is usually referred to as the consistency of the scheme. Subtract-
ing (2.4) from (2.5), we obtain the error equation which represents the Galerkin orthogonality

Bj(u − uh, r − sh;ϕh, ψ̄h) = 0 (2.6)

for all j and all ϕh ∈ Vh and ψ̄h ∈ Wh.
We now define P and Q as the standard L2 projection into Vh and Wh respectively. That is, for each j,∫

Ij

(Pw(x) − w(x))ϕh(x)dx = 0 ∀ϕh ∈ P
k(Ij) (2.7)

and ∫
I

j+ 1
2

(Qw(x) − w(x))ψh(x)dx = 0 ∀ψh ∈ P
k(Ij+ 1

2
) (2.8)

where P
k(Ij) and P

k(Ij+ 1
2
) denote the spaces of polynomials of the degree up to k in the cell Ij and the cell

Ij+ 1
2

respectively. Standard approximation theory [2] implies, for a smooth function w,

‖(Pw(x) − w(x))‖ + h1/2‖(Pw(x) − w(x))‖Γj ≤ Chk+1 (2.9)
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and
‖(Qw(x) − w(x))‖ + h1/2‖(Qw(x) − w(x))‖Γ

j+ 1
2
≤ Chk+1 (2.10)

where Γj and Γj+ 1
2

denote the set of boundary points of all elements Ij and Ij+1/2 respectively, and the positive
constant C, here and below, solely depending on w(x) and its first k + 2 derivatives, is independent of h.

We also recall that [2], for any wh ∈ Vh or wh ∈ Wh, there exists a positive constant C independent of wh

and h, such that
‖∂xwh‖ ≤ Ch−1‖wh‖; ‖wh‖Γ ≤ Ch−1/2‖wh‖ (2.11)

where Γ = Γj or Γj+ 1
2
.

We now take:
ϕh = Pu− uh, ψ̄h = Qr − sh (2.12)

in the error equation (2.6), and denote

ϕe = Pu− u, ψe = Qr − r (2.13)

to obtain
Bj(ϕh, ψ̄h;ϕh, ψ̄h) = Bj(ϕe, ψe;ϕh, ψ̄h). (2.14)

For the left-hand side of (2.14), we use a similar proof as that for Theorem 2.1 to conclude

∑
j

Bj(ϕh, ψ̄h;ϕh, ψ̄h) =
1
2

d
dt

∫ b

a

(ϕh)2dx+
∫ b

a

(ψ̄h)2dx. (2.15)

We then write the right-hand side of (2.14) as a sum of three terms

Bj(ϕe, ψe;ϕh, ψ̄h) = B1
j +B2

j +B3
j (2.16)

where

B1
j =

∫
Ij

∂tϕ
eϕhdx+

∫
I

j+ 1
2

ψeψ̄hdx

B2
j =

∫
Ij

ψe∂xϕhdx+
∫

I
j+ 1

2

ϕe∂xψ̄hdx

B3
j = −ψe

(
xj+ 1

2
, t
)
ϕh

(
x−

j+ 1
2
, t
)

+ ψe
(
xj− 1

2
, t
)
ϕh

(
x+

j− 1
2
, t
)
− ϕe (xj+1, t) ψ̄h

(
x−j+1, t

)
+ ϕe (xj , t) ψ̄h

(
x+

j , t
)

and we will estimate each term separately.
By the definition of the L2 projection (2.7)–(2.8), we have

∑
j

B1
j = 0. (2.17)

By using the simple inequality

αβ ≤ 1
2
(
α2 + β2

)
, (2.18)

the L2 projection error property (2.9)–(2.10) for ϕe and ψe, and the first inequality in (2.11) for ϕh and ψ̄h, we
have: ∑

j

|B2
j | ≤

1
4

(∫ b

a

(ϕh)2dx+
∫ b

a

(ψ̄h)2dx

)
+ Ch2k. (2.19)
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Finally, by using the simple inequality (2.18), the L2 projection error property (2.9)–(2.10) for ϕe and ψe,
and the second inequality in (2.11) for ϕh and ψ̄h, we have:

∑
j

|B3
j | ≤

1
4

(∫ b

a

(ϕh)2dx+
∫ b

a

(ψ̄h)2dx

)
+ Ch2k. (2.20)

Summing up (2.17), (2.19) and (2.20) and combining with (2.15), we obtain from (2.14)

d
dt

∫ b

a

(ϕh)2dx+
∫ b

a

(ψ̄h)2dx ≤ C

∫ b

a

(ϕh)2dx+ Ch2k.

or
d
dt

∫ b

a

(Pu− uh)2dx+
∫ b

a

(Qr − sh)2dx ≤ C

∫ b

a

(Pu− uh)2dx+ Ch2k. (2.21)

Similarly we have:

d
dt

∫ b

a

(Qu− vh)2dx+
∫ b

a

(Pr − rh)2dx ≤ C

∫ b

a

(Qu− vh)2dx+ Ch2k. (2.22)

This, together with an application of the Gronwall’s inequality [1] and the approximation result (2.9), (2.10)
for the projection errors and the errors of the initial condition, implies the desired error estimate (2.2). �
Remark 2.2. The error estimate of Theorem 2.2 is sub-optimal. The loss of accuracy mainly comes from the
estimate on B2

j . Because it involves the products of piecewise polynomials on different meshes, the standard
trick of introducing a projection to make it zero does not apply. The boundary term B3

j can be brought to zero
by special projections, but this will not help in improving the global error estimate. We will see from numerical
experiments later that this suboptimal error estimate is actually sharp for at least k = 1.

Remark 2.3. The error estimate of Theorem 2.2 can be easily generalized to multi-dimensional scalar linear
diffusion equations.

2.3. A quantitative error estimate via Fourier analysis

In this subsection we perform a Fourier analysis for the semi-discrete central LDG scheme on overlapping
cells (1.7)–(1.10) solving the heat equation (1.2) with uniform meshes for piecewise constant and piecewise
linear elements, using the techniques in [10,11], to obtain quantitative error estimates. We also use numerical
experiments to verify these error estimates.

For the simplest piecewise constant k = 0 case, we obtain the finite difference schemes corresponding to the
central LDG scheme on overlapping cells (1.7)–(1.10) as follows:

u′j =
1
h

(
sj+ 1

2
− sj− 1

2

)
sj+ 1

2
=

1
h

(uj+1 − uj) (2.23)

for j = 0, . . . , N − 1. Here u′ denotes the time derivatives of u, and wα denotes the value of the numerical
solution w at the point xα, with w = u or s and α = j or j + 1

2 . Eliminating s, we get:

u′j =
1
h2

(uj+1 − 2uj + uj−1) . (2.24)

This is apparently the standard second order centered finite difference scheme for solving the heat equation (1.2).
Nevertheless, in order to demonstrate our procedure we still perform the following standard Fourier analysis.
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Note that this analysis depends heavily on the assumption of uniform mesh sizes and periodic boundary condi-
tions. We make an ansatz of the form

uj(t) = ûm(t)eimxj (2.25)

and substitute this into the scheme (2.24) to find the evolution equation for the coefficient as

û′m(t) =
2
h2

(cos(mh) − 1)ûm(t). (2.26)

The general solution of the ODE (2.26) is given by

ûm(t) = a0e
2

h2 (cos(mh)−1)t. (2.27)

For accuracy we look at the low modes, in particular at m = 1. To fit the given initial condition

uj(0) = eixj (2.28)

whose imaginary part is the initial condition

uj(0) = sin(xj) (2.29)

we require, at t = 0,
û1(0) = 1,

hence we obtain the coefficients a0 in (2.27) as
a0 = 1. (2.30)

We remark that the usual way of taking initial conditions in a finite element method is via an L2 projection, not
by a point value collocation (2.29), however this does not affect the final results in the analysis in this paper.
We thus have the explicit solutions of the scheme (2.24) with the initial condition (2.28), for example

uj(t) = a0eixj+
2

h2 (cos(mh)−1)t (2.31)

with m = 1 and the coefficient a0 given by (2.30). By a simple Taylor expansion, we obtain the imaginary part
of uj(t) to be

Im{uj(t)} = e−t sin(xj) +
1
12
h2te−t sin(xj) +O(h3). (2.32)

This is clearly consistent, and it is second order accurate at the cell center xj . This second order accuracy is
however a superconvergence phenomenon for uniform meshes at the cell center. We can do a similar analysis
for Im{vj+ 1

2
(t)}.

We now compute the k = 0 central LDG solutions on overlapping cells (1.7)–(1.10) with u(x, 0) = sin(x) as
the initial condition and with periodic boundary conditions, up to t = 4π, to verify the quantitative comparison
above. We use forward Euler time discretization and take a small time step Δt = 0.01h2 to reduce the effect
from the time discretization. In order to be consistent with the error analysis above, the errors are computed
for uh at the points xj . The discrete L2 and L∞ errors (measuring the errors at cell centers xj only, namely√

1
N

∑N
j=1 |u(xj , t) − uj(t)|2 for the L2 error and maxj |u(xj , t)−uj(t)| for the L∞ error) and order of accuracy

of the central LDG method on overlapping cells are listed in Table 1. We also list the predicted errors by
the analysis, namely the leading terms in the Taylor expansions in (2.32) in the table. We can see that the
predicted errors and the actual errors are very close, validating the quantitative analysis in (2.32). The error
at cell centers is apparently second order accurate. When measuring as finite element solutions (using 40

uniformly spaced sampling points per cell to compute the L2 error
√

1
2π

∫ 2π

0 |u(x, t) − uh(x, t)|2dx and the
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Table 1. Discrete L2 and L∞ errors for uh, measured at the center of the cells, and orders of
accuracy of the central LDG method (1.7)–(1.10) for k = 0.

Numerical solutions Predicted by analysis

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 2.68E-07 – 3.78E-07 – 2.55E-07 – 3.60E-07 –
2π/40 6.45E-08 2.05 9.12E-08 2.05 6.37E-08 2.00 9.01E-01 2.00
2π/80 1.60E-08 2.01 2.26E-08 2.01 1.59E-08 2.00 2.25E-08 2.00
2π/160 3.99E-09 2.00 5.64E-09 2.00 3.98E-09 2.00 5.63E-09 2.00
2π/320 9.96E-10 2.00 1.41E-09 2.00 9.96E-10 2.00 1.41E-09 2.00
2π/640 2.49E-10 2.00 3.52E-10 2.00 2.49E-10 2.00 3.52E-10 2.00

Table 2. L2 and L∞ errors, measured as finite element solutions, and orders of accuracy of
the central LDG method (1.7)–(1.10) for k = 0.

uh

h L2 error Order L∞ error Order
2π/20 2.01E-06 – 6.89E-07 –
2π/40 7.08E-07 1.51 2.92E-07 1.24
2π/80 3.17E-07 1.16 1.39E-07 1.07
2π/160 1.54E-07 1.04 6.88E-08 1.02
2π/320 7.67E-08 1.01 3.43E-08 1.00
2π/640 3.83E-08 1.00 1.71E-08 1.00

L∞ error maxx |u(x, t) − uh(x, t)|), the L2 and L∞ errors and order of accuracy of the central LDG scheme
(1.7)–(1.10) are listed in Table 2. Apparently, these errors are first order.

We now repeat this analysis for the piecewise linear k = 1 case. The solution inside the cell Ij or Ij+ 1
2

is
then represented by

uh(x, t) = uj− 1
4
(t)ϕ1

h(ξ) + uj+ 1
4
(t)ϕ2

h(ξ)

and
sh(x, t) = sj+ 1

4
(t)ψ̄1

h(ξ) + sj+ 3
4
ψ̄2

h(ξ)

where ϕ1
h(ξ) = −ξ + 1

2 , ϕ2
h(ξ) = ξ + 1

2 , ψ̄1
h(ξ) = −ξ + 3

2 and ψ̄2
h(ξ) = ξ − 1

2 , with ξ = 2(x−xj)
h . With this

representation, taking the test functions ϕh and ψ̄h as ϕ1
h, ϕ2

h and ψ̄1
h, ψ̄2

h respectively, eliminating the variable
s, and inverting the small 2×2 mass matrix by hand, we obtain easily the finite difference scheme corresponding
to the central LDG scheme (1.7) and (1.10) as

(
u′

j− 1
4

u′
j+ 1

4

)
= A

(
uj− 5

4

uj− 3
4

)
+B

(
uj− 1

4

uj+ 1
4

)
+ C

(
uj+ 3

4

uj+ 5
4

)
. (2.33)

with

A =
1
h2

(
13
8

−5
8−5

8
13
8

)
, B =

1
h2

( −13
4

5
4

5
4

−13
4

)
, C =

1
h2

(
13
8

−5
8−5

8
13
8

)
(2.34)

for j = 0, . . . , N−1. Here u′ denotes the time derivatives of u. We again perform the following standard Fourier
analysis for the finite difference scheme (2.33). We make an ansatz of the form

(
uj− 1

4
(t)

uj+ 1
4
(t)

)
=
(
ûm,− 1

4
(t)

ûm, 14
(t)

)
eimxj (2.35)
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and substitute this into the scheme (2.33) to find the evolution equation for the coefficient vector as

(
û′

m,− 1
4
(t)

û′
m,+ 1

4
(t)

)
= G(m,h)

(
ûm,− 1

4
(t)

ûm,+ 1
4
(t)

)
(2.36)

where the amplification matrix G(m,h) is given by

G(m,h) = A e−imh + B + C eimh (2.37)

with the matrices A, B and C defined by (2.34). The eigenvalues of the amplification matrix G(m,h) are

λ1 = −2 + e−imh + eimh, λ2 = −9
4
e−imh(−1 + eimh)2. (2.38)

The general solution of the ODE (2.33) is given by

(
ûm,− 1

4
(t)

ûm,+ 1
4
(t)

)
= a1 eλ1t V1 + a2 eλ2t V2, (2.39)

where the eigenvalues λ1 and λ2 are given by (2.38), and V1 and V2 are the corresponding eigenvectors given by

V1 =
(

1
1

)
, V2 =

( −1
1

)
. (2.40)

For accuracy we look at the low modes, in particular at m = 1. To fit the given initial condition

uj− 1
4
(0) = e

ix
j− 1

4 , uj+ 1
4
(0) = e

ix
j+ 1

4 (2.41)

whose imaginary part is our initial condition for (1.2), we require, at t = 0,

(
ûm,− 1

4
(0)

ûm,+ 1
4
(0)

)
=

(
ei −h

4

ei h
4

)
.

This gives us the coefficients a1 and a2 in the solution (2.39). We thus have the explicit solution of the scheme
(2.33), (2.34) with the initial condition (2.41), for example

uj− 1
4

= a1eixj+λ1t−i h
4 V1 + a2eixj+λ2t−i h

4 V2 (2.42)

with the eigenvalues λ1 and λ2 given by (2.38) and the eigenvectors V1 and V2 given by (2.40) with m = 1,
and the coefficients a1 and a2 obtained by fitting the initial condition. Through a simple Taylor expansion, we
obtain the imaginary part of uj− 1

4
(t) to be

Im{uj− 1
4
(t)} = e−t sin(xj− 1

4
) +

h

4
e−t

(
e−

5t
4 + 1

)
cos(xj− 1

4
) +O(h2). (2.43)

The result for Im{uj+ 1
4
(t)} is similar. This analysis indicates a sub-optimal convergence rate of first order for

piecewise linear polynomials.
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Table 3. Discrete L2 and L∞ errors for uh, measured at the points xj− 1
4
, and orders of

accuracy of the central LDG method (1.7)–(1.10) for k = 1.

Numerical solutions Predicted by analysis

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 3.30E-07 – 4.66E-07 – 1.94E-07 – 2.73E-07 –
2π/40 1.16E-07 1.50 1.64E-07 1.50 9.68E-08 1.00 1.37E-07 1.00
2π/80 5.10E-08 1.19 7.21E-08 1.19 4.48E-08 1.00 6.84E-08 1.00
2π/160 2.45E-08 1.06 3.47E-08 1.06 2.42E-08 1.00 3.42E-08 1.00
2π/320 1.22E-08 1.01 1.72E-08 1.01 1.21E-08 1.00 1.71E-08 1.00
2π/640 6.06E-09 1.00 8.57E-09 1.00 6.05E-09 1.00 8.56E-09 1.00

Table 4. L2 and L∞ errors, measured as finite element solutions, and orders of accuracy of
the central LDG method (1.7)–(1.10) for k = 1.

uh

h L2 error Order L∞ error Order
2π/20 1.97E-06 – 6.82E-07 –
2π/40 7.02E-07 1.49 2.91E-07 1.23
2π/80 3.16E-07 1.15 1.39E-07 1.07
2π/160 1.54E-07 1.04 6.87E-08 1.02
2π/320 7.67E-08 1.01 3.43E-08 1.00
2π/640 3.83E-08 1.00 1.71E-08 1.00

In principle this analysis can be performed for higher order polynomials in the central LDG scheme on
overlapping cells (1.7)–(1.10), however the algebra becomes prohibitively complicated.

We now compute the central LDG scheme (1.7)–(1.10) for k = 1 on overlapping cells to (1.2) with u(x, 0) =
sin(x) as the initial condition and with periodic boundary conditions, up to t = 4π, to verify the quantitative
analysis above. We use a second order Runge-Kutta method and take a small time step Δt = 0.01h2 to reduce
the effect from the time discretization. In order to be consistent with the error analysis above, the errors are
computed for uh at the points xj− 1

4
. The discrete L2 and L∞ errors and order of accuracy of the central LDG

method (1.7)–(1.10) on overlapping cells are listed in Table 3. We also list the predicted errors by the analysis,
namely the leading terms in the Taylor expansions in (2.43) in the tables. We can see that the predicted errors
and the actual errors are very close, validating our quantitative analysis in (2.43). It is only first order accurate
for the LDG method on overlapping cells. When measuring as finite element solutions (using 40 uniformly
spaced sampling points per cell), the L2 and L∞ errors and order of accuracy of the central LDG method
(1.7)–(1.10) are listed in Table 4. Again, the errors are only first order.

According to the analysis and numerical experiments in this section and in Section 4, it appears that the
central LDG method (1.7)–(1.10) on overlapping cells is suboptimal of order k for k = 1 but it seems to achieve
the optimal (k + 1)-th order for k > 1.

3. Analysis of the second version of central LDG scheme on overlapping

cells

In this section, we perform a similar analysis for the second version of the central LDG scheme on overlapping
cells, given by (1.11)–(1.14), for solving the heat equation (1.2). As before, we study the L2 stability of the
central LDG scheme (1.11)–(1.14) in Section 3.1. In Section 3.2 we provide a L2 a priori error estimate for



1020 Y. LIU ET AL.

smooth solutions. In Section 3.3 we give a quantitative error estimate for this scheme for polynomial degree up
to 1 using Fourier analysis, and provide numerical evidence to verify this analysis.

3.1. L2 stability

Theorem 3.1. The numerical solution uh, rh, vh and sh of the central LDG scheme (1.11)–(1.14) for equa-
tion (1.2) satisfies the following L2 stability condition

1
2

d
dt

∫ b

a

(
(uh)2 + (vh)2

)
dx+

∫ b

a

(
r2h + s2h

)
dx ≤ 0. (3.1)

Proof. Taking the test functions ϕh = uh, ψh = vh, ϕ̄h = rh and ψ̄h = sh in (1.11)–(1.14) respectively, summing
up over j, and observing the periodic boundary condition, we have

1
2

d
dt

∫ b

a

u2
hdx+

1
2

d
dt

∫ b

a

v2
hdx+

∫ b

a

r2hdx+
∫ b

a

s2hdx

=
∑

j

[
1

τmax

⎛
⎝∫ x

j+ 1
2

x
j− 1

2

(vh − uh)uhdx+
∫ xj+1

xj

(uh − vh) vhdx

⎞
⎠

−
⎛
⎝∫ x

j+ 1
2

x
j− 1

2

∂x (uh) shdx+
∫ xj+1

xj

∂x (sh)uhdx

⎞
⎠−

⎛
⎝∫ x

j+ 1
2

x
j− 1

2

∂x (rh) vhdx+
∫ xj+1

xj

∂x (vh) rhdx

⎞
⎠

+ sh

(
xj+ 1

2
, t
)
uh

(
x−

j+ 1
2
, t
)
− sh

(
xj− 1

2
, t
)
uh

(
x+

j− 1
2
, t
)

+ rh (xj+1, t) vh

(
x−j+1, t

)
− rh (xj , t) vh

(
x+

j , t
)

+ vh

(
xj+ 1

2
, t
)
rh

(
x−

j+ 1
2
, t
)
− vh

(
xj− 1

2
, t
)
rh

(
x+

j− 1
2
, t
)

+ uh (xj+1, t) sh

(
x−j+1, t

)− uh (xj , t) sh

(
x+

j , t
) ]

= − 1
τmax

∫ b

a

(uh − vh)2dx

≤ 0. �

Remark 3.1. Comparing with the L2 stability of the first version of the central LDG scheme, we notice the
additional numerical dissipation

∫ b

a
(uh − vh)2dx, which is related to the difference of the two duplicative sets

of information in the computational domain. The second version of the central LDG scheme couples these two
sets of duplicative solutions through the extra numerical diffusion term.

3.2. L2 a priori error estimate

In this subsection we obtain an a priori L2 error estimate for the central LDG scheme (1.11)–(1.14).

Theorem 3.2. The numerical solution uh, rh, vh and sh of the central LDG scheme (1.11)–(1.14) for the
equation (1.2) with a smooth initial condition u(·, 0) ∈ Hk+2 satisfies the following L2 error estimate

‖u− uh‖2 + ‖u− vh‖2 + |||ux − rh|||2 + |||ux − sh|||2 ≤ Ch2k (3.2)

where u, the constant C, and the norms are the same as those in Theorem 2.2.
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Proof. We introduce the following notation

Bj(uh, vh, rh, sh;ϕh, ψh, ϕ̄h, ψ̄h)

=
∫

Ij

∂t (uh) ϕhdx+
∫

I
j+ 1

2

∂t (vh) ψhdx+
∫

Ij

rh ϕ̄hdx+
∫

I
j+ 1

2

sh ψ̄hdx

− 1
τmax

(∫
Ij

(vh − uh)ϕhdx+
∫

j+ 1
2

(uh − vh)ψhdx

)

+
∫

Ij

∂x (ϕh) shdx+
∫

I
j+ 1

2

∂x (ψh) rhdx+
∫

Ij

∂x (ϕ̄h) vhdx+
∫

I
j+ 1

2

∂x

(
ψ̄h

)
uhdx

− sh

(
xj+ 1

2
, t
)
ϕh

(
x−

j+ 1
2
, t
)

+ sh

(
xj− 1

2
, t
)
ϕh

(
x+

j− 1
2
, t
)
− rh (xj+1, t)ψh

(
x−j+1, t

)
+ rh (xj , t)ψh

(
x+

j , t
)− vh

(
xj+ 1

2
, t
)
ϕ̄h

(
x−

j+ 1
2
, t
)

+ vh

(
xj− 1

2
, t
)
ϕ̄h

(
x+

j− 1
2
, t
)

− uh (xj+1, t) ψ̄h

(
x−j+1, t

)
+ uh (xj , t) ψ̄h

(
x+

j , t
)
.

By the definition of the scheme, we have:

Bj(uh, vh, rh, sh;ϕh, ψh, ϕ̄h, ψ̄h) = 0 (3.3)

for all j and all ϕh, ϕ̄h ∈ Vh and ψh, ψ̄h ∈ Wh. The consistency of the scheme can also be easily verified, namely
the exact solutions u, v = u and r, s = ux of the PDE (1.2) satisfy

Bj(u, v, r, s;ϕh, ψh, ϕ̄h, ψ̄h) = 0 (3.4)

for all j and all ϕh, ϕ̄h ∈ Vh and ψh, ψ̄h ∈ Wh. Subtracting (3.3) from (3.4), we obtain the error equation or
the Galerkin orthogonality

Bj(u− uh, v − vh, r − rh, s− sh;ϕh, ψh, ϕ̄h, ψ̄h) = 0 (3.5)

for all ϕh, ϕ̄h ∈ Vh and ψh, ψ̄h ∈Wh.
With P and Q still denoting the standard L2 projection into Vh and Wh respectively, we take

ϕh = Pu− uh, ψh = Qv − vh, ϕ̄h = Pr − rh, ψ̄h = Qs− sh (3.6)

in the error equation (3.5), and denote

ϕe = Pu− u, ψe = Qv − v, ϕ̄e = Pr − r, ψ̄e = Qs− s (3.7)

to obtain
Bj(ϕh, ψh, ϕ̄h, ψ̄h;ϕh, ψh, ϕ̄h, ψ̄h) = Bj(ϕe, ψe, ϕ̄e, ψ̄e;ϕh, ψh, ϕ̄h, ψ̄h). (3.8)

For the left-hand side of (3.8), we use a similar proof as that for Theorem 3.1 to conclude∑
j

Bj(ϕh, ψh, ϕ̄h, ψ̄h;ϕh, ψh, ϕ̄h, ψ̄h)

=
1
2

d
dt

∫ b

a

(ϕh)2dx+
1
2

d
dt

∫ b

a

(ψh)2dx+
∫ b

a

(ϕ̄h)2dx+
∫ b

a

(ψ̄h)2dx (3.9)

+
1

τmax

∫ b

a

(ϕh − ψh)2dx.
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We write the right-hand side of (3.8) as a sum of four terms

Bj(ϕe, ψe, ϕ̄e, ψ̄e;ϕh, ψh, ϕ̄h, ψ̄h) = B1
j +B2

j +B3
j +B4

j (3.10)

where

B1
j =

∫
Ij

∂tϕ
e ϕhdx+

∫
I

j+ 1
2

∂tψ
e ψhdx+

∫
Ij

ϕ̄e ϕ̄hdx+
∫

I
j+ 1

2

ψ̄e ψ̄hdx

B2
j = − 1

τmax

(∫
Ij

(ψe − ϕe)ϕhdx+
∫

j+ 1
2

(ϕe − ψe)ψhdx

)

B3
j =

∫
Ij

∂x (ϕh) ψ̄edx+
∫

I
j+ 1

2

∂x (ψh) ϕ̄edx+
∫

Ij

∂x (ϕ̄h)ψedx+
∫

I
j+ 1

2

∂x

(
ψ̄h

)
ϕedx

B4
j = −ψ̄e

(
xj+ 1

2
, t
)
ϕh

(
x−

j+ 1
2
, t
)

+ ψ̄e
(
xj− 1

2
, t
)
ϕh

(
x+

j− 1
2
, t
)
− ϕ̄e (xj+1, t)ψh

(
x−j+1, t

)
+ ϕ̄e (xj , t)ψh

(
x+

j , t
)− ψe

(
xj+ 1

2
, t
)
ϕ̄h

(
x−

j+ 1
2
, t
)

+ ψe
(
xj− 1

2
, t
)
ϕ̄h

(
x+

j− 1
2
, t
)

− ϕe (xj+1, t) ψ̄h

(
x−j+1, t

)
+ ϕe (xj , t) ψ̄h

(
x+

j , t
)

and we will estimate each term separately.
By the definition of the L2 projection (2.7), (2.8), we have∑

j

B1
j = 0. (3.11)

By using the simple inequality (2.18), the L2 projection error property (2.9), (2.10) for ϕe and ψe, and the
fact that τmax = ch2, we have

∑
j

|B2
j | ≤

1
τmax

(
1
2

∫ b

a

(ψe − ϕe)2dx+
1
2

∫ b

a

(ϕh − ψh)2dx

)
(3.12)

≤ 1
2τmax

∫ b

a

(ϕh − ψh)2dx+ Ch2k.

Again, by using the simple inequality (2.18), the L2 projection error property (2.9), (2.10) for ϕe, ψe, ϕ̄e and
ψ̄e, and the first inequality in (2.11) for ϕh, ψh, ϕ̄h and ψ̄h, we have:

∑
j

|B3
j | ≤

1
4

∫ b

a

(
(ϕh)2dx+ (ψh)2 + (ϕ̄h)2 + (ψ̄h)2

)
dx+ Ch2k. (3.13)

Finally, by using the simple inequality (2.18), the L2 projection error property (2.9)–(2.10) for ϕe, ψe, ϕ̄e

and ψ̄e, and the second inequality in (2.11) for ϕh, ψh, ϕ̄h and ψ̄h, we have:

∑
j

|B4
j | ≤

1
4

∫ b

a

(
(ϕh)2dx+ (ψh)2 + (ϕ̄h)2 + (ψ̄h)2

)
dx+ Ch2k. (3.14)

Summing up (3.11), (3.12), (3.13) and (3.14) and combining with (3.9), we obtain from (3.8)

d
dt

∫ b

a

(
(ϕh)2 + (ψh)2

)
dx+

∫ b

a

(
(ϕ̄h)2 + (ψ̄h)2

)
dx ≤

∫ b

a

((ϕh)2 + (ψh)2)dx + Ch2k.
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This, together with an application of the Gronwall’s inequality and the approximation result (2.9), (2.10) for
the projection errors and the errors of the initial condition, implies the desired error estimate (3.2). �

Remark 3.2. The error estimate of Theorem 3.2 is sub-optimal. Analysis in the next subsection and numerical
evidence there and in Section 4 indicate that the method actually converges at the optimal (k + 1)-th order.

Remark 3.3. The error estimate of Theorem 3.2 can be easily generalized to multi-dimensional scalar linear
diffusion equations.

3.3. A quantitative error estimate via Fourier analysis

In this subsection we perform a Fourier analysis for the second version of the semi-discrete central LDG
scheme (1.11)–(1.14) for the diffusion equation (1.2) with uniform meshes for piecewise constant and linear
elements, using the techniques in [10,11] like in Section 2.3. We also use numerical experiments to verify these
error estimates.

For the piecewise constant k = 0 case, we obtain the finite difference schemes corresponding to the central
LDG scheme (1.11)–(1.14) as follows:

u′j =
1
h

(
sj+ 1

2
− sj− 1

2

)
− 1
τmax

uj +
1

2τmax

(
vj+ 1

2
− vj− 1

2

)
rj =

1
h

(
vj+ 1

2
− vj− 1

2

)
v′j+ 1

2
=

1
h

(rj+1 − rj) − 1
τmax

vj+ 1
2

+
1

2τmax
(uj+1 − uj)

sj+ 1
2

=
1
h

(uj+1 − uj) (3.15)

for j = 0, . . . , N − 1. Here u′ and v′ denotes the time derivatives of u and v respectively. Eliminating r and s,
we get: (

u′j
v′

j+ 1
2

)
= A

(
uj−1

vj− 1
2

)
+B

(
uj

vj+ 1
2

)
+ C

(
uj+1

vj+ 3
2

)
(3.16)

with

A =
1
h2

(
1 h2

2τmax

0 1

)
, B =

1
h2

(
−2 − h2

τmax

h2

2τmax
h2

2τmax
−2 − h2

τmax

)
, C =

1
h2

(
1 0
h2

2τmax
1

)
(3.17)

for j = 0, . . . , N − 1. We again perform the following standard Fourier analysis for the finite difference
scheme (3.16). We make an ansatz of the form

(
uj(t)
vj+ 1

2
(t)

)
=
(
ûm,0(t)
v̂m, 1

2
(t)

)
eimxj (3.18)

and substitute this into the scheme (3.16) to find the evolution equation for the coefficient vector as

(
û′m,0(t)
v̂′

m, 1
2
(t)

)
= G(m,h)

(
ûm,0(t)
ûm, 12

(t)

)
(3.19)

where the amplification matrix G(m,h) is given by

G(m,h) = A e−imh + B + C eimh (3.20)
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Table 5. Discrete L2 and L∞ errors for uh, measured at the center of the cells, and orders of
accuracy of the central LDG method (1.11)–(1.14) for k = 0.

Numerical solutions Predicted by analysis

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 2.47E-06 – 3.49E-06 – 2.47E-06 – 3.49E-06 –
2π/40 2.47E-06 0.00 3.49E-06 0.00 2.47E-06 0.00 3.49E-06 0.00
2π/80 2.47E-06 0.00 3.49E-06 0.00 2.47E-06 0.00 3.49E-06 0.00
2π/160 2.47E-06 0.00 3.49E-06 0.00 2.47E-06 0.00 3.49E-06 0.00
2π/320 2.47E-06 0.00 3.49E-06 0.00 2.47E-06 0.00 3.49E-06 0.00
2π/640 2.47E-06 0.00 3.49E-06 0.00 2.47E-06 0.00 3.49E-06 0.00

with the matrices A, B and C defined by (3.17). For accuracy we look at the low modes, in particular at m = 1.
To fit the given initial condition

uj(0) = eixj , vj+ 1
2
(0) = e

ix
j+1

2 (3.21)

whose imaginary part is our initial condition for (1.2), we require, at t = 0,

(
ûm,0(0)
v̂m, 1

2
(0)

)
=
(

1
ei h

2

)
.

Then we get the solution of the ODEs (3.16), (3.17) with the initial condition (3.21) for m = 1. Through a
simple Taylor expansion, we obtain the imaginary part of uj(t) to be

Im{uj(t)} = e−t− t
8a sin(xj) + h2

(
1
12

e−t− t
8a +

t

384a
e−t− t

8a

)
sin(xj) +O(h3) (3.22)

where a = τmax
h2 . The result for Im{vj+ 1

2
(t)} is similar. This analysis indicates that the scheme is not consistent

for piecewise constant elements.
We now compute the central LDG solutions on overlapping cells (1.11)–(1.14) with u(x, 0) = sin(x) as the

initial condition and with periodic boundary conditions, up to t = 4π, to verify the quantitative analysis above.
Numerical results show that the maximum time step for stability is τmax = 0.12h2. We use forward Euler time
discretization and take a small time step Δt = 0.1τmax to reduce the effect from the time discretization. In
order to be consistent with the error analysis above, the errors are computed for uh at the points xj for the
piecewise constant elements. The numerical results are listed in Table 5. We also list the predicted errors by
the analysis, namely the leading terms in the Taylor expansions in (3.22) in the table. We can see that the
error analysis above and the numerical results are consistent, indicating that the method for the k = 0 case is
not consistent.

For the piecewise linear k = 1 case, we obtain easily the finite difference scheme corresponding to the central
LDG scheme (1.11)–(1.14) overlapping cells:

⎛
⎜⎜⎜⎝

u′
j− 1

4

u′
j+ 1

4

v′
j+ 1

4

v′
j+ 3

4

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

uj− 5
4

uj− 3
4

vj− 3
4

vj− 1
4

⎞
⎟⎟⎟⎠+B

⎛
⎜⎜⎜⎝

uj− 1
4

uj+ 1
4

vj+ 1
4

vj+ 3
4

⎞
⎟⎟⎟⎠+ C

⎛
⎜⎜⎜⎝

uj+ 3
4

uj+ 5
4

vj+ 5
4

vj+ 7
4

⎞
⎟⎟⎟⎠ (3.23)
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Table 6. Discrete L2 and L∞ errors and orders of accuracy of the central LDG method (1.11)–
(1.14), measured at the points xj− 1

4
for k = 1.

Numerical solutions Predicted by analysis

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 7.18E-07 – 1.01E-06 – 8.60E-07 – 1.21E-06 –
2π/40 2.05E-07 1.81 2.90E-07 1.80 2.15E-07 2.00 3.04E-07 2.00
2π/80 5.31E-08 1.95 7.51-08 1.95 5.38E-08 2.00 7.60E-08 2.00
2π/160 1.34E-08 1.99 1.90E-08 1.99 1.34E-08 2.00 1.90E-08 2.00
2π/320 3.36E-09 2.00 4.75E-09 2.00 3.36E-09 2.00 4.75E-09 2.00
2π/640 8.40E-10 2.00 1.19E-09 2.00 8.40E-10 2.00 1.19E-09 2.00

with the matrices A, B, and C given as

A =
1

16a

⎛
⎜⎜⎝

26a −10a 1 13
−10a 26a −1 3

0 0 26a −10a
0 0 −10a 26a

⎞
⎟⎟⎠ ,

B =
1

16a

⎛
⎜⎜⎝

−4(4 + 13a) 20a 3 −1
20a −4(4 + 13a) 13 1
1 13 −4(4 + 13a) 20a
−1 3 20a −4(4 + 13a)

⎞
⎟⎟⎠ ,

C =
1

16a

⎛
⎜⎜⎝

26a −10a 0 0
−10a 26a 0 0

3 −1 26a −10a
13 1 −10a 26a

⎞
⎟⎟⎠ (3.24)

for j = 0, . . . , N − 1, where a = τmax
h2 . Here u′ and v′ denote the time derivatives of u and v respectively. We

again perform the standard Fourier analysis for the finite difference scheme. We obtain the imaginary part of
uj− 1

4
(t) to be

Im{uj− 1
4
(t)} = e−t sin

(
xj− 1

4

)
+

(1 + 8a)t
384a

h2e−t sin
(
xj− 1

4

)
+O(h3). (3.25)

The result for Im{uj+ 1
4
(t)}, Im{vj+ 1

4
(t)} and Im{vj+ 3

4
(t)} are similar. Clearly, the method is now optimal

second order accurate.
We now compute the central LDG scheme (1.11)–(1.14) on overlapping cells to (1.2) with u(x, 0) = sin(x) as

the initial condition and with periodic boundary conditions, up to t = 4π, to verify the quantitative analysis
above. We take τmax = 0.01h2, and use a second order Runge-Kutta method and take a small time step
Δt = 0.1τmax to reduce the effect from the time discretization. In order to be consistent with the error analysis
above, the errors are computed for uh at the points xj− 1

4
. The discrete L2 and L∞ errors and order of accuracy

of the central LDG method (1.11)–(1.14) are listed in Table 6. We also list the predicted errors by the analysis,
namely the leading terms in the Taylor expansions in (3.25) in the table. We can see that the predicted errors
and the actual errors are very close, validating our quantitative analysis in (3.25). It clear shows the expected
optimal second order accuracy. When measuring as finite element solutions (using 40 uniformly spaced sampling
points per cell), the L2 and L∞ errors and order of accuracy are listed in Table 7. Again, the errors are second
order for the central LDG scheme (1.11)–(1.14).

In principle similar analysis can be performed for higher order polynomials in the central LDG scheme (1.11)–
(1.14), however the algebra becomes prohibitively complicated.
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Table 7. L2 and L∞ errors, measured as finite element solutions, and orders of accuracy of
the local LDG method (1.11)–(1.14) for k = 1.

uh

h L2 error order L∞ error order
2π/20 4.52E-06 – 1.02E-06 –
2π/40 1.29E-06 1.80 2.93E-07 1.81
2π/80 3.35E-07 1.95 7.58E-08 1.95
2π/160 8.45E-08 1.99 1.91E-08 1.99
2π/320 2.12E-08 2.00 4.79E-09 2.00
2π/640 5.30E-09 2.00 1.20E-09 2.00

4. A comparison among the traditional LDG scheme and the two versions

of central LDG methods on overlapping cells

In this section, we give a quantitative comparison among the traditional LDG scheme and the two versions of
central LDG methods on overlapping uniform and non-uniform meshes for solving the heat equation (1.2) with
smooth and non-smooth initial conditions respectively. We should keep in mind that the traditional LDG scheme
and the first version of the central LDG scheme (1.7)–(1.10) involve the same number of operation counts, when
implemented in the matrix form (2.33), however the second version of the central LDG scheme (1.11)–(1.14) is
about three times as expensive when implemented in the matrix form (3.24) when noticing the zeros in some
of the matrices.

4.1. The three methods on uniform grids for the heat equation with smooth initial
condition

In [10], results similar to those in Sections 2.3 and 3.3 were obtained for the traditional LDG scheme (1.4), (1.5)
applied to the diffusion equation (1.2). For the piecewise constant k = 0 case, the result for the traditional LDG
scheme is the same as the LDG method on overlapping cells (2.32). For the piecewise linear k = 1 case, it is

Im{uj− 1
4
(t)} = e−t sin

(
xj− 1

4

)
−

e−t sin
(
xj− 1

4

)
24

h2 +O(h3). (4.1)

We now compute the traditional LDG scheme (1.4), (1.5) for k = 1 to (1.2) with u(x, 0) = sin(x) as the
initial condition and with periodic boundary conditions, up to t = 4π. We use a second order Runge-Kutta
method and take a small time step Δt = 0.01h2. The discrete L2 and L∞ errors and order of accuracy of uh at
the points xj− 1

4
are listed in Table 8. When measuring as finite element solutions (using 40 uniformly spaced

sampling points per cell), the L2 and L∞ errors and order of accuracy are also listed in Table 8. Again, the
errors are second order.

Based on the results in Sections 2.3, 3.3 and above results, we have the following conclusions. Here, the
traditional LDG scheme refers to (1.4), (1.5); the first version of the central LDG scheme on overlapping cells
refers to (1.7)–(1.10); and the second version of the central LDG scheme on overlapping cells refers to (1.11)–
(1.14).

For the piecewise constant k = 0 case:
1. The semi-discrete versions of the traditional LDG scheme, and the two versions of the central LDG

schemes on overlapping cells are all stable.
2. The semi-discrete versions of the traditional LDG and first version of central LDG scheme on overlapping

cells are the same, and they are both second order accurate at the cell centers xj and first order when
measured as finite element solutions. However, the second version of central LDG scheme on overlapping
cells is not consistent.
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Table 8. Discrete L2 and L∞ errors for uh, measured at the points xj− 1
4

and as finite element
solutions, and orders of accuracy of the traditional LDG scheme (1.4), (1.5) for k = 1.

Measured at the points xj− 1
4

Measured as finite element solutions

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 9.69E-09 – 1.36E-08 – 6.81E-08 – 5.60E-08 –
2π/40 2.51E-09 1.95 3.54E-09 1.95 1.71E-08 2.00 1.39E-08 2.01
2π/80 6.32E-10 1.99 8.94E-10 1.99 4.29E-09 2.00 3.46E-09 2.00
2π/160 1.58E-10 2.00 2.24E-10 2.00 1.07E-09 2.00 8.64E-10 2.00
2π/320 3.96E-11 2.00 5.60E-11 2.00 2.68E-10 2.00 2.16E-10 2.00
2π/640 9.90E-12 2.00 1.40E-11 2.00 6.70E-11 2.00 5.40E-11 2.00

Table 9. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on uniform grids for k = 2.

First version Second version

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 3.70E-4 – 3.74E-4 – 3.62E-4 – 3.36E-04 –
2π/40 4.84E-5 2.94 5.10E-5 2.88 4.52E-5 3.00 4.18E-5 3.01
2π/80 6.49E-6 2.90 6.99E-6 2.88 5.66E-6 3.00 5.22E-6 3.00
2π/160 8.19E-7 2.99 8.82E-7 2.99 7.07E-7 3.00 6.53E-7 3.00
2π/320 1.02E-7 3.00 1.10E-7 3.00 8.84E-8 3.00 8.17E-8 3.00
2π/640 1.28E-8 3.00 1.38E-8 3.00 1.10E-8 3.00 1.02E-8 3.00

For the piecewise linear k = 1 case we have the following conclusions:

1. The semi-discrete versions of the traditional LDG scheme and the two versions of central LDG schemes
on overlapping cells are all consistent and stable.

2. Both the traditional LDG scheme and the second version of central LDG scheme on overlapping cells
are second order accurate. Comparing (3.25) with (4.1), we can see that the leading term of the error for
the second version of the central LDG scheme is about half of that for the traditional LDG scheme for
a = 1. However, the first version of the central LDG scheme on overlapping cells is first order accurate.

For the k = 2 and k = 3 cases, it is difficult to make the quantitative analysis as in Sections 2.3 and 3.3. We
therefore perform numerical tests to draw some general conclusions. We compute the two versions of the central
LDG schemes on overlapping cells and traditional LDG scheme to (1.2) with periodic boundary conditions, up
to t = 4π, with the initial condition u(x, 0) = sin(0.01x). For the first version of the central LDG on overlapping
cells and the traditional LDG scheme, we use the second order Runge-Kutta method with a small time step
Δt = 0.001h2 to reduce the effect from the time discretization. For the second version of the central LDG on
overlapping cells, we use τmax = 0.01h2, and the second order Runge-Kutta method with a small time step
Δt = 0.1τmax to reduce the effect from the time discretization. The L2 and L∞ errors and order of accuracy of
these two central LDG schemes are listed in Table 9 for k = 2 and Table 10 for k = 3 respectively. The results
of the traditional LDG scheme are shown in Table 11 for k = 2 and k = 3.

For the k = 4 cases, we compute the two versions of the central LDG schemes on overlapping cells and
traditional LDG scheme to (1.2) with periodic boundary conditions, up to t = 4π, with the initial condition
u(x, 0) = sin(0.0001x). For the first version of the central LDG on overlapping cells and the traditional LDG
scheme, we use the second order Runge-Kutta method with a small time step Δt = 0.0001h2 to reduce the
effect from the time discretization. For the second version of the central LDG on overlapping cells, we use
τmax = 0.001h2, and the second order Runge-Kutta method with a small time step Δt = 0.1τmax to reduce
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Table 10. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on uniform grids for k = 3.

First version Second version
h L2 error Order L∞ error Order L2 error Order L∞ error Order

2π/20 7.31E-6 – 9.47E-6 – 7.21E-6 – 8.19E-6 –
2π/40 4.51E-7 4.02 5.16E-7 4.20 4.59E-7 3.97 4.69E-7 4.13
2π/80 2.84E-8 4.00 3.05E-8 4.08 2.87E-8 4.00 2.93E-8 4.00
2π/160 1.77E-9 4.00 1.91E-9 4.00 1.79E-9 4.00 1.83E-9 4.00
2π/320 1.11E-10 4.00 1.19E-10 4.00 1.12E-10 4.00 1.15E-10 4.00
2π/640 6.92E-12 4.00 7.47E-12 4.00 6.93E-12 4.02 7.08E-12 4.02

Table 11. L2 and L∞ errors and orders of accuracy of the traditional LDG methods uniform
grids for k = 2 and k = 3.

k = 2 k = 3

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 4.20E-4 – 3.05E-4 – 8.37E-6 – 9.84E-6 –
2π/40 6.17E-5 2.75 4.61E-5 2.73 5.97E-7 3.81 5.22E-7 4.24
2π/80 8.04E-6 2.94 6.33E-6 2.86 3.86E-8 3.95 3.13E-8 4.05
2π/160 1.00E-6 3.00 7.92E-7 3.00 2.42E-9 4.00 1.97E-9 4.00
2π/320 1.26E-7 3.00 9.91E-8 3.00 1.51E-10 4.00 1.23E-10 4.00
2π/640 1.57E-8 3.00 1.24E-8 3.00 9.42E-12 4.00 7.61E-12 4.00

Table 12. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on uniform grids for k = 4.

First version Second version

h L2 error order L∞ error order L2 error order L∞ error order
2π/20 1.30E-7 – 2.41E-7 – 1.30E-7 – 2.41E-7 –
2π/40 4.07E-9 5.00 7.54E-9 5.00 4.06E-9 5.00 7.51E-9 5.00
2π/80 1.28E-10 5.00 2.37E-10 5.00 1.26E-10 5.01 2.32E-10 5.01
2π/160 4.05E-12 4.98 7.56E-12 4.97 3.87E-12 5.03 6.99E-12 5.05

Table 13. L2 and L∞ errors and orders of accuracy of the traditional LDG methods on
uniform grids for k = 4.

k = 4

h L2 error Order L∞ error Order
2π/20 1.30E-7 – 2.40E-7 –
2π/40 4.06E-9 5.00 7.49E-9 5.01
2π/80 1.26E-10 5.01 2.30E-10 5.02
2π/160 3.85E-12 5.03 6.76E-12 5.10

the effect from the time discretization. The L2 and L∞ errors and order of accuracy of these two central LDG
schemes are listed in Table 12 for k = 4. The results of the traditional LDG scheme are shown in Table 13.

The numerical results suggest that the first version of the central LDG scheme is of sub-optimal first order
accuracy for k = 1 and of optimal (k+ 1)-th order for k �= 1, and the second version of the central LDG scheme
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Table 14. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on non-uniform grids for k = 0.

First version Second version

h L2 error Order L∞ error Order
2π/20 1.55E-04 – 2.52E-05 – 1.36E-04 – 2.49E-05 –
2π/40 1.32E-05 3.55 2.78E-06 3.40 2.43E-05 2.49 6.44E-06 1.95
2π/80 1.03E-06 3.68 3.03E-07 2.97 1.56E-06 0.64 3.69E-07 0.81
2π/160 1.57E-07 2.71 7.75E-08 1.96 1.56E-05 0.00 3.49E-06 0.00
2π/320 7.68E-08 1.03 3.75E-08 1.05 1.56E-05 0.00 3.49E-06 0.00
2π/640 3.84E-08 1.01 1.85E-08 1.02 1.56E-05 0.00 3.49E-06 0.00

Table 15. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on non-uniform grids for k = 1.

First version Second version

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 1.20E-4 – 4.62E-5 – 3.41E-5 – 6.37E-6 –
2π/40 1.75E-4 -0.54 6.04E-5 -0.39 4.84E-6 2.82 1.03E-6 2.63
2π/80 3.18E-5 2.48 1.09E-5 2.47 4.60E-7 3.39 1.26E-7 3.03
2π/160 1.08E-5 1.55 3.75E-6 1.54 8.45E-8 2.44 1.96E-8 2.68
2π/320 2.11E-6 2.35 7.56E-7 2.31 2.14E-8 1.99 5.28E-9 1.89
2π/640 2.23E-6 0.00 7.77E-7 0.00 5.31E-9 2.01 1.28E-9 2.05

is of the optimal (k + 1)-th order for all k. Quantitatively, it seems that the errors for the two versions of the
central LDG scheme are close and they are slightly smaller than that for the regular LDG scheme for the same
mesh size.

4.2. The three methods on randomly perturbed non-uniform grids for the heat equation
with smooth initial condition

Since the central LDG methods use two overlapping grids and the interplay between them might be important
for the convergence, we numerically study the errors on non-uniform meshes in this subsection. The non-uniform
meshes in this subsection are obtained by randomly perturbing each cell interface of a uniform mesh by up to
10%.

As before, for the k = 0 and k = 1 cases, we compute the two versions of the central LDG schemes
on overlapping cells to (1.2) with periodic boundary conditions, up to t = 4π, with the initial condition
u(x, 0) = sin(x) on non-uniform meshes. Here for the first version of the central LDG on overlapping cells, we
use the second order Runge-Kutta method with a small time step Δt = 0.001h2 to reduce the effect from the
time discretization. For the second version of the central LDG on overlapping cells, we use τmax = 0.01h2, and
the second order Runge-Kutta method with a small time step Δt = 0.1τmax to reduce the effect from the time
discretization. The L2 and L∞ errors and order of accuracy of these two central LDG schemes are listed in
Table 14 for k = 0 and in Table 15 for k = 1, respectively. The results of the second version of the central LDG
scheme for k = 0 are expected since the scheme is not consistent. The results of the first version of the central
LDG scheme for the k = 1 case does not provide a clean order pattern, however Figure 1 shows the relationship
between the L2 errors and the number of cells for this case, with the order of accuracy being 1.92 by a least
square fitting.

For the k = 2 and k = 3 cases, the two versions of the central LDG schemes on overlapping cells to (1.2)
with periodic boundary conditions, up to t = 4π, with the initial condition u(x, 0) = sin(0.01x) on the same
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Figure 1. The L2 error versus the number of cells, in logarithm scale, obtained by using the
first version of the central LDG methods with non-uniform meshes. The symbols (square) are
the L2 errors and the solid line is the least square fit to the errors.

Table 16. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on non-uniform grids for k = 2.

First version Second version

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 3.69E-4 – 3.78E-4 – 3.62E-4 – 3.55E-4 –
2π/40 4.86E-5 2.93 5.28E-5 2.84 4.55E-5 2.99 4.48E-5 2.99
2π/80 6.51E-6 2.90 7.67E-6 2.78 5.71E-6 3.00 5.69E-6 2.98
2π/160 8.26E-7 2.98 1.02E-6 2.91 7.20E-7 2.99 7.38E-7 2.94
2π/320 1.03E-7 3.00 1.33E-7 2.93 9.01E-8 3.00 9.23E-8 3.00
2π/640 1.29E-8 3.00 1.65E-8 3.01 1.12E-8 3.00 1.16E-9 2.99

randomly perturbed non-uniform grids are tested. For the first version of the central LDG on overlapping cells,
we use the second order Runge-Kutta method with a small time step Δt = 0.001h2 to reduce the effect from
the time discretization. For the second version of the central LDG on overlapping cells, we use τmax = 0.01h2,
and the second order Runge-Kutta method with a small time step Δt = 0.1τmax to reduce the effect from the
time discretization. The L2 and L∞ errors and order of accuracy of these two central LDG schemes are listed
in Table 16 for k = 2 and Table 17 for k = 3, respectively.

For the k = 4 cases, we compute the two versions of the central LDG schemes on overlapping cells to (1.2)
with periodic boundary conditions, up to t = 4π, with the initial condition u(x, 0) = sin(0.0001x) on the same
randomly perturbed non-uniform grids. For the first version of the central LDG on overlapping cells, we use
the second order Runge-Kutta method with a small time step Δt = 0.0001h2 to reduce the effect from the time
discretization. For the second version of the central LDG on overlapping cells, we use τmax = 0.001h2, and
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Table 17. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on non-uniform grids for k = 3.

First version Second version

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 7.46E-6 – 1.06E-5 – 7.43E-6 – 8.68E-6 –
2π/40 4.57E-7 4.03 6.42E-7 4.04 4.64E-7 4.00 5.85E-7 3.89
2π/80 2.87E-8 4.00 3.89E-8 4.05 2.89E-8 4.01 3.56E-8 4.04
2π/160 1.80E-9 3.99 2.55E-9 3.93 1.81E-9 4.00 2.31E-9 3.95
2π/320 1.13E-10 4.00 1.78E-10 3.84 1.13E-10 4.00 1.48E-10 3.96
2π/640 7.09E-12 3.99 1.16E-11 3.95 7.05E-12 4.00 9.49E-12 3.97

Table 18. L2 and L∞ errors and orders of accuracy of the two versions of the central LDG
methods on non-uniform grids for k = 4.

First version Second version

h L2 error Order L∞ error Order L2 error order L∞ error Order
2π/20 1.30E-7 – 2.54E-7 – 1.30E-7 – 2.54E-7 –
2π/40 4.12E-9 4.98 8.04E-9 4.98 4.11E-9 4.98 8.01E-9 4.99
2π/80 1.28E-10 5.01 2.65E-10 4.93 1.27E-10 5.01 2.61E-10 4.94
2π/160 4.01E-12 5.00 9.16E-12 4.85 3.90E-12 5.02 8.71E-12 4.91
2π/320 1.26E-13 5.00 2.80E-13 5.03 1.14E-13 5.09 2.30E-13 5.24

the second order Runge-Kutta method with a small time step Δt = 0.1τmax to reduce the effect from the time
discretization. The L2 and L∞ errors and order of accuracy of these two central LDG schemes are listed in
Table 18 for k = 4.

By comparing the above results, we can see that L2 and L∞ errors and order of accuracy of these two central
LDG schemes on uniform grids and randomly perturbed non-uniform grids are comparable, with the errors on
the non-uniform grids slightly larger for the same number of cells.

4.3. The three methods on uniform grids for the heat equation with non-smooth initial
condition

In the subsection, we compute the two versions of the central LDG schemes on overlapping cells and the
traditional LDG scheme to (1.2) with periodic boundary conditions, up to t = 4π, with the non-smooth initial
condition

u(x, 0) =
{

1, |x− π| ≤ π
2

0, otherwise

for k = 2. For the first version of the central LDG methods and the traditional LDG scheme on uniform grids,
we use the second order Runge-Kutta method with a small time step Δt = 0.0001h2 to reduce the effect from
the time discretization. The results are shown in Table 19. The order of accuracy is 2. This is expected as the
lack of regularity of the initial condition impacts the order of convergence.

For the second version of the central LDG on overlapping cells, we use τmax = 0.1h2, and the second order
Runge-Kutta method with a small time step Δt = 0.01τmax to reduce the effect from the time discretization.
Table 20 shows the results. The order of accuracy is also 2. However, the errors are smaller than the traditional
LDG or the first version of the central LDG on the same meshes, indicating that the extra numerical dissipation
in the second version of the central LDG scheme is helping for non-smooth data.
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Table 19. L2 and L∞ errors and orders of accuracy of the first version of the central LDG
methods and traditional LDG method with non-smooth initial condition for k = 2.

First version Traditional LDG

h L2 error Order L∞ error Order L2 error Order L∞ error Order
2π/20 6.10E-8 – 1.37E-8 – 6.09E-8 – 1.37E-8 –
2π/40 1.53E-8 2.00 3.42E-9 2.00 1.53E-8 2.00 3.42E-9 2.00
2π/80 3.83E-9 2.00 8.56E-10 2.00 3.83E-9 2.00 8.62E-10 1.99
2π/160 9.64E-10 1.99 2.18E-10 1.98 9.67E-10 1.99 2.38E-10 1.86

Table 20. L2 and L∞ errors and orders of accuracy of the second version of the central LDG
methods with non-smooth initial condition for k = 2.

k = 2

h L2 error Order L∞ error Order
2π/20 3.07E-8 – 6.90E-9 –
2π/40 7.66E-9 2.00 1.72E-9 2.01
2π/80 1.92E-9 2.00 4.29E-10 2.00
2π/160 4.83E-10 1.99 1.12E-10 1.94

5. Concluding remarks

We have described two versions of the central local discontinuous Galerkin (LDG) methods for solving
parabolic equations. Stability analysis and error estimates are given for the linear heat equation. Quantitative
analysis and comparisons are given for the traditional LDG scheme and the two versions of central LDG schemes.
The central LDG schemes avoid the choice of numerical fluxes and provide duplicative information based on
the two overlapping meshes.
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